05202024Mon
Last updateSun, 19 May 2024 8pm
>>

3D printing of recyclable processed construction waste for mold making

voxeljet and Parastruct have successfully used binder jetting 3D printing to investigate the processing of recycled, biogenic, and mineral waste materials from the construction industry in an initial proof of concept.

Parastruct’s material and binder technology is fully recyclable and can reduce primary resource consumption by up to 90% while minimizing disposal costs.
The next step is to develop the technology further with application partners in mold making for cold casting and laminating applications.

In an initial proof of concept, voxeljet AG and Parastruct GmbH have successfully tested the 3D printing of recyclable residual materials from the construction industry. For this purpose, voxeljet’s Binder Jetting 3D printing technology was used. The material tested was the Ecomould material set from Parastruct GmbH. A material set consisting of biogenic production residues from the construction industry and a mineral binder, which was developed by the Austrian start-up. Using binder jetting, Ecomould can be used to produce molded parts that are suitable for the cold casting of concrete and ceramics for interior design objects or for laminating processes. The Ecomould material was tested on a VX200 from voxeljet – a 3D printing system specially developed for research and development purposes.

Parastruct GmbH is an Austrian company that offers a sustainable solution for recyclable mold making using their developed technology and Ecomould material set. The market for excess material recycling is expected to grow at an annual rate of 7-9% until 2025[1]. Increasing legal obligations and customer requirements as part of Corporate Social Responsibility (CSR) strategies are driving interest and demand for sustainable value-added solutions. Parastruct utilizes 3D printing to reintroduce unused mineral materials, such as production waste from the construction industry, and biogenic resources, such as wood flour or sawdust, back into the value creation process.

Companies can make potential savings by eliminating disposal costs, which can be as high as €75-100/t for construction waste and €70-180/t for wood, and by reducing resource expenditures to optimize overall profitability. Ecomould can assist in achieving sustainability goals, particularly in light of stricter guidelines like the EU Green Deal. Ecomould has a significantly lower CO² footprint than conventionally manufactured sand-phenolic resin molds, emitting -108.3 kg CO² per 1m² of mold surface*.

Ecomould-produced molds can be shredded and reused as particle material in 3D printing. A plastic coating can be applied as a finish, which is removable at the end of its service life. This second use of Ecomould material reduces the carbon footprint even further.

voxeljet’s binder jetting 3D printing technology is ideal for processing Ecomould due to the fact that voxeljet 3D printers are open-source systems whose printing parameters can be flexibly adapted to different material sets. Additionally, voxeljet offers a wide range of printers, currently in sizes up to 4 x 2 x 1 m, which promises easy scaling of the Ecomould results to larger, more productive 3D printers.

Interested parties are being sought to jointly advance the transformation of a more sustainable construction industry in a possible funding project.

[1] Kai-Stefan Schober (2021): https://www.rolandberger.com/en/Insights/Publications/It%E2%80%99s-time-for-construction-to-embrace-the-circular-economy.html (abgerufen am 18.01.2024)

* Parastruct GmbH used the Impact Forecast Tool to determine and certify the carbon footprint.

www.voxeljet.com

 

comments

Related articles

  • Latest Post

  • Most Read

  • Twitter

Who's Online

We have 11313 guests and one member online

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.